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Species, genes and epigenetics: how dimensions
of diversity interact for forest resilience

by Stuart W. Smith, Stephen Cavers, Estrella Luna Diez, David Edwards, Joan Cottrell, Carol Kyle,
Chris Nichols, Holly McKelvey, Victoria Stokes and Ruth J. Mitchell

Summary:

Diversity is seen as key to building the resilience of UK
forests and woodlands to future environmental change.
However, diversity has many dimensions encompassing
species diversity, within-species genetic diversity
and within-individual epigenetic effects. Current forest
management strategies and policies have a strong focus on
building species diversity but rarely consider how different
dimensions of diversity interact and how they can be

Introduction

Diversity is seen as key to enabling UK forests and
woodlands to be resilient and adapt to a changing
environment (Defra, 2018; Atkinson, Morison and Nicall,
2022). Although diversity can come from many sources,
here we consider biological diversity, which covers
species diversity, within-species genetic diversity and
within-individual epigenetic changes and the ways they
interact. We aim to highlight some of the key questions that
forest managers need to consider if they wish to diversify
their forests to make them more resilient to the coming
environmental change.

The Tree of Knowledge project (https://www.hutton.
ac.uk/project/tree-of-knowledge/), funded by UK Research
and Innovation-Natural Environmental Research Council’s
‘Future of UK Treescapes’ programme, drew on outcomes
from three of the programme’s research projects,
DiversiTree (https://www.hutton.ac.uk/project/diversitree/),
newLEAF (https://www.ceh.ac.uk/our-science/projects/
newleaf) and MEMBRA (https://membra.info/about/) to
examine species, genetic and epigenetic diversity. In
this article, we briefly outline the different dimensions
of diversity, provide examples of how these dimensions
are known to or may interact and highlight options for
diversifying forests.

Definitions of diversity and resilience

Diversity can be defined at different levels from the
individual to whole ecosystem, and spatial scale is
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integrated to enhance resilience. In this article, we explore
current knowledge on these dimensions of diversity as well
as known and potential interactions. We identify key aspects
of forestry for which the multiple dimensions of diversity have
an impact, namely: (1) spatial scale, (2) natural colonisation
and regeneration, and (3) the nursery environment. We
conclude with general points to consider when using
multiple dimensions of diversity to increase forest resilience.

important. Here, we consider definitions for trees and
forestry (Figure 1):

Species diversity is the number of different tree species
found in a specified area e.g. stand, forest or region.

Genetic diversity is the number of different genetic
individuals (DNA genotypes) found within one tree species
and is typically measured in populations. DNA contains
genes, the expression of which determine the response
of an individual to its environment. Individuals that have
similar genetic make-up due to local adaptation to shared
environmental conditions (e.g. climate, soil type, etc.) are
referred to as a provenance.

Epigenetic effects are chemical modifications to DNA
that alter gene expression but do not change the DNA
code. Epigenetic changes induced by environmental
pressures may be long-lasting, hence epigenetic effects can
be described as ‘memory’. However, epigenetic effects may
also be lost if a stress no longer exists. Some epigenetic
changes may be passed among generations. The concept
of epigenetic diversity is complex as it depends on an
interaction between genetic diversity and the environment,
so we refer to epigenetic effects rather than diversity.

Considering the definition of resilience laid out in
Biodiversity 2020 by Defra as the ability of an ecological
system to “absorb, resist or recover from disturbance and
damage...while continuing to meet overall objectives of
supporting biodiversity and providing ecosystem services”
(Defra, 2011), we can ask what roles different levels of
diversity play.
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Genetic diversity is the raw material of
evolution and supports resilience in two
ways. In a forest, the standing genetic
diversity determines the immediate
range of responses in a population so
underpins the resilience of the current
generation. This standing diversity
also provides adaptive potential as it
determines the genetic composition of
offspring through mating and therefore
underpins the resilience of future
generations.

As with species diversity, the genetic
diversity-resilience relationship is
complex. Similar to the bet-hedging
mechanism, genetic diversity increases
the range of possible responses of a
species to its environment, including
genotypes that may be less suited to
the current environment but do better in
a future environment. The relationship is
not linear; beyond a certain level, adding
genetic diversity may simply add more
genotypes that are sub-optimal for both
current and likely future environments.

The epigenetic response of trees is
an emerging area of research and as
such both the theory and application
of the epigenetic-resilience relationship
is still developing. For UK tree species,
the MEMBRA project has focused on
identifying epigenetic changes in ash
(Fraxinus excelsior) in response to ash

Figure 1. Infographic showing different dimensions of diversity found in

UK woodlands and forests.

The species diversity-resilience relationship for trees
is complex and our understanding is largely theoretical,
but essentially, it should operate through three principal
mechanisms: (1) bet-hedging, where the presence of
multiple species means that some species will survive
even if others are lost, (2) functional redundancy, when
two species can deliver a similar function from the same
environment, and (3) dilution where, for pests and diseases,
higher species diversity dilutes impact by reducing the
number of individual trees affected. Individual tree species
may differ considerably in what they add to overall
resilience.
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dieback disease and in oak (Quercus
robur) to acute oak decline, drought and
CO, stimulation (unpublished results).
These stresses were tested to a lesser
extent in birch (Betula pendula), beech (Fagus sylvatica)
and hazel (Corylus avellana).

Interactions between dimensions of diversity
We collated knowledge from project leaders, project
meetings, conferences and policymaker and practitioner
workshops between 2023 and 2025 and identified key
interactions among the different dimensions of diversity
(Figure 2). These are grouped into positive — where
outcomes increase resilience or sources of diversity
complement one another in contributing to resilience, or
negative — where outcomes decrease resilience or sources
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of diversity are not complementary and/or management
decisions need to prioritise one source of diversity over
another. This list is not exhaustive and other potential
interactions exist.

Positive interaction
Species-genetic: High species diversity and high genetic
diversity can reduce the impacts of some pests and
pathogens via a dilution effect, in other words reducing
the prevalence of a pest/disease because only a
proportion of species/genotypes will be susceptible or
act as hosts (Koricheva et al., 2006; Barantal et al., 2019;
Jactel, Moreira and Castagneyrol, 2021; Gougherty and
Davies, 2024; Keesing and Ostfeld, 2024).
Species-epigenetic: Epigenetic effects can widen
a specific species’ stress tolerance and this has been
shown as part of emerging research from the MEMBRA
project and previous work from the Epidiverse project

(Epidiverse, 2022; Rodriguez et al., 2022).

Genetic-epigenetic: Genetic diversity and epigenetic
effects operate at different temporal scales. Standing
genetic diversity determines the immediate range of
responses of a population because each individual has
a different genetic makeup, whilst genetic change over
generations determines the scale of adaptive response
over time. Epigenetic effects operate at the single tree
level and can occur within the lifespan of a tree, although
the range of responses will also reflect the standing
genetic diversity. Genetic diversity and epigenetic
responses may allow both long- and short-term response
to a stress but understanding the outcomes of this
interaction requires future research.

Negative interactions
Species-genetic: In a forest area with a finite number of
trees, there will be a trade-off between species diversity
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Figure 2. Infographic of positive and negative interactions between species diversity, genetic diversity and epigenetic effects.
Positive interactions refer to those that increase resilience or complement one another, whereas negative interactions decrease
resilience or sources of diversity are not complementary and/or management decisions need to prioritise one source of diversity over another.
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and genetic diversity. This can be thought of as an
‘opportunity cost’, where each tree of one species that
is present means one tree of another is not. Focussing
on species diversification with low numbers of trees
for each species may lead to more short-term than
long-term resilience due to the reduction in adaptive
potential that comes from lower genetic diversity. The
introduction of new species (or genotypes) in pursuit of
species diversification risks maladaptation to current or
future climate conditions and unforeseen risks, such as
introducing or facilitating pests or pathogens (Ghelardini
et al., 2016; Piotrowska et al., 2018).

Species-epigenetic: Emerging research suggests
that the magnitude of epigenetic effects differs between
tree species; therefore, resilience outcomes based
on epigenetic effects may be less beneficial for some
species than others.

Genetic-epigenetic: There is uncertainty over whether

prioritising epigenetic effects would inhibit longer-term
genetic adaptation by enabling a greater proportion of
genetically poorly adapted trees to survive during the

process of natural selection. This concern is currently

hypothetical and requires future research.

Management considerations

Below we outline three key management considerations
that emerged from knowledge collation, in which
interactions among dimensions of diversity may have

an impact (Figure 3). In each case outcomes will be
context specific, depending on forest type, land manager
objectives and cultural significance amongst many other
factors. Managers will need to develop a clear, operational
understanding of resilience for their context: consider
what needs to be resilient (e.g., a particular species, or an
ecosystem service such as timber production), and to what
pressure (e.g., a particular disease, or increased drought).

wWwot planting pattevns enabo\e
xvee wixiures o suvvive ?

Figure 3. Infographic overview of three key management considerations for integrating species diversity,
genetic diversity and epigenetic effects.
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Spatial scale
Species and genetic diversity can be considered at
different spatial scales. For example, a single species
stand is much less diverse than a stand containing multiple
species (Figure 3). Yet if a landscape is filled with identical
stands of the latter, it may be no more diverse than a
landscape filled with single species stands, if each stand
contains a different species. There are many ways to
achieve stand-level diversity, for example Forest Research
have produced guidance on Forest Development Types
which includes options for decision-making at multiple
scales (Haufe et al., 2024).

At the stand scale there are broadly speaking two
contrasting approaches to increase species or genetic
diversity:

® A mixture design of two or more species in close
proximity achieves higher species diversity at a local
scale. Mixed forests are more resilient on average than
monocultures to mammal and insect herbivores, and
soil-borne fungal diseases, but effects are contingent
on species composition (Jactel et al., 2017; Jactel,
Moreira and Castagneyrol, 2021). Admixing broadleaves
to conifer stands can increase fire and wind resistance
compared to conifer monocultures (Jactel et al., 2017).
However, the benefits of mixed stands for threats such
as drought are less clear and depend on species. In
the UK, intimate mixes of Sitka spruce and Scots pine
did not result in greater resilience to spring drought
compared to monocultures after 24 years (Ovenden et
al., 2022). A diversity experiment using intimate mixtures
in Germany showed higher mortality following drought,
concluding the need to select drought tolerant tree
species as opposed to higher diversity per se (Shovon
et al., 2024). Managing mixtures can be logistically
challenging and costly, especially if one species needs
to be selectively removed. Also, commercial harvesting
and processing systems are better able to manage
uniform products as opposed to diverse products
(although rotations are long enough to allow the
processing sector time to adapt).

® Separate blocks of different single species also result
in diversification at a larger spatial scale. Many tree
species are not compatible in some mixture designs and
planting separate blocks of different single species may
provide a suitable alternative (Kerr et al., 2020). This has
been recommended for diversification of Sitka spruce by
DiversiTree (Mitchell et al., 2025). Planting in blocks can
introduce a second species unaffected by the primary
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threats to Sitka, providing resilience at the spatial scale
of the blocks. Logistically, planting in blocks aligns

with current conifer harvesting practices and aids
selective removal of a species. However, single species
blocks come with some of the issues associated with
monocultures and clear-felling.

For genetic diversity, questions of scale concern the
balance between local adaptation and gene flow, the
natural dispersal of genes via seed and pollen. The former
tends to narrow diversity as natural selection favours locally
optimised genotypes, whilst the latter tends to widen
diversity, bringing non-local diversity into a population
(Figures 3 and 4). The balance between these two depends
on the strength of local selection and the spatial extent at
which gene dispersal happens for a species. In the UK,
although local adaptation is present, it is typically weak and,
as most species are effectively dispersed by wind or birds,
gene flow is extensive.

Concerns about diversity arise mainly where populations
are small and fragmented, or where the spatial extent
of gene flow is not thought to be sufficient to bring new
diversity into the population fast enough to match the rate
of environmental change. In the latter case, strategies to
augment genetic diversity have been proposed, such as
assisted gene flow (Alberto et al., 2013) also termed assisted
migration (Richardson et al., 2009). This aims to introduce
future-adapted genotypes by importing provenances from
sites in which current conditions match those predicted
in future at the planting site (Whittet et al., 2019). There
are many concerns around assisted gene flow/migration
including the risk of maladaptation and potential failure
of introduced non-local provenances (Fady et al., 2016),
homogenising genetics at larger spatial scales (NatureScot,
2019), and the uncertainty of forecasts of future conditions.
Forest managers should avoid drastically reducing diversity
of small, fragmented populations, build population sizes and
avoid homogenisation, but otherwise actively encourage the
processes that enable natural gene exchange.

Where timber production is the primary objective,
breeding can improve key traits for production, such as
vigour and timber quality, but tends to reduce genetic
diversity (Trivedi et al., 2019; Finzgar et al., 2023).
Deliberately increasing genetic diversity could introduce
more sub-optimal genotypes, so reducing overall
productivity in the current environment. However, resilience
could be achieved if the environment changes to become
less suitable for current optimal genotypes and more
suitable for some of the sub-optimal genotypes (Figure 4).
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Figure 4. Infographic displaying breadth of trait variation in relation to genetic variation across the UK climate and
how different forest management options shape genetic diversity.

Natural processes

Natural colonisation is where trees self-seed onto

open ground (unwooded for >20 years), whilst natural
regeneration occurs in existing woodland (FitzGerald et al.,
2023). Both processes allow natural selection to operate
but require nearby seed sources and could be vulnerable
if climate change inhibits reproduction. Nevertheless, these
processes can effectively support multiple dimensions of
diversity (Figure 3):

® Species diversity: Natural processes allow recruitment
of any species with seed sources nearby, resulting
in species composition which is suited to the current
environmental conditions (Harmer, Tucker and
Nickerson, 2004). However, natural colonisation and
regeneration can result in low species diversity if the
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diversity of seed sources is low, competition is intense
between species, or through herbivory.

Genetic diversity: Natural colonisation and regeneration
enables selection to optimise genotypic composition to
current environmental conditions (Cottrell, 2020) providing
population-level resilience. As selection is strongest in
early life stages, if opportunities for natural regeneration
are spatiotemporally diverse, seedling populations can
track rapidly changing environments, but this is limited by
the rate of recruitment (Whittet et al., 2019).

Epigenetic effects: Retaining stressed trees to set

seed may take advantage of epigenetic effects that, if
inherited, could be passed on to the next generation.
This appears to be occurring in the ash dieback and
acute oak decline epidemics (MEMBRA preliminary
results). A balance between removal of severely infected

Quarterly Journal of Forestry



trees and retention of those healthy enough to reproduce
should be considered when diseases become endemic.
Retention may help when woodland recovery is the goal,
as opposed to timber production. However, Statutory
Plant Health Notices must be followed for high-risk
pathogens and pests as the aim is to eliminate or
significantly slow the spread of the disease.

The nursery environment

The nursery environment can have large and lasting impacts
on growth and survival even after the trees are planted out
(Figure 3). NewLEAF research showed that differences
among plants from contrasting nursery environments were
detectable more than a decade after planting (Perry et al.,
2024). Epigenetic changes could be induced in a nursery
by exposing seedlings to stress or chemical treatments, a
process known as priming that increases seedling resilience
to these stresses when planted out (Amaral et al., 2020).
Results have shown that oak seedlings can be primed for
defence against powdery mildew (Sanchez-Lucas et al.,
2025), whilst elder (Sambucus nigra) cuttings can be primed
for resistance to drought (Tidy, 2024).

Conclusions

Diversity has multiple dimensions and general points to
consider for a forest context are: (1) diversification will not
always equal greater resilience; (2) whatever approach is
taken, we need to maintain within-species genetic diversity,
to allow a range of responses to environmental change;

(8) there is no ‘one right answer’ to the question of how to
diversify and management objectives are key. Given the
range and uncertainty of unknown future threats, a range

of diversification approaches across sites may provide
maximum resilience at the landscape scale; (4) diversification
may involve challenging decisions, and failure may be part
of the process. For example, we expect higher mortality of ill-
adapted species or genotypes, and there may be a trade-off
between ecological resilience and performance/productivity.
However, the cost of not diversifying may be greater.
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watch?v=z30ueryKo-k
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